PARALLEL TRANSMIT RF SIMULATION WORKFLOWS

Joseph V. Rispoli

Associate Professor

Weldon School of Biomedical Engineering

Elmore Family School of Electrical & Computer Engineering

Purdue University

June 6, 2023 Sim4Life User Workshop @ ISMRM 2023

PARALLEL TRANSMIT @ 7T

- Radiofrequency EM field simulations
 - 16-channel 7T transceiver array coil w/ <u>R</u>esonant <u>Inductive</u> <u>D</u>ecoupling
 - Primary motivation: E-field dosimetry safety analysis

Avdievich, Pan, Hetherington, NMR Biomed 2013.

MODEL SETUP

- CAD models imported into Sim4Life
 - 16 segmented coil elements, 208 total segments
 - 2-piece shield
 - Virtual Population models
- 2 mm maximum grid step
- Tissue to coil distance > 10 mm
- Free space padding: 38 cm
- Excitation: modulated Gaussian
 - center 300 MHz, bandwidth 100 MHz

B_1^+ MAPS (INDIVIDUAL EXCITATION)

$$a_{in} = V_k e^{j(\phi_k)}$$

B_1^+ MAPS (SIMULTANEOUS EXCITATION)

BENCH VALIDATION OF DECOUPLING

Without RID

CO-SIMULATION

 $\begin{bmatrix} Z_1 \\ L_1 \\ R_1 \end{bmatrix}$

$$\boldsymbol{Z}_{\text{TD}} = \begin{bmatrix} j\omega L_1 + R_1 & j\omega k_1 L_1 \\ j\omega k_1 L_1 & j\omega L_1 + R_1 \end{bmatrix}$$
$$\boldsymbol{S}_{\text{TD}} = (\boldsymbol{Z}_{\text{TD}} - 50 \boldsymbol{I})(\boldsymbol{Z}_{\text{TD}} + 50 \boldsymbol{I})^{-1}$$

 $\begin{bmatrix} Z_1 \\ L_0 \end{bmatrix} \begin{bmatrix} k_0 \\ C_0 \end{bmatrix} \begin{bmatrix} k_0 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_2 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_2 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\ K_0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Z_1 \\$

TD (transformer decoupling)

$$\boldsymbol{Z}_{\text{RID}} = \begin{bmatrix} j\omega L_{0} + R_{0} - \frac{\omega^{2}k_{0}^{2}L_{0}^{2}\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)}{\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)^{2} - \left(\frac{j}{\omega C_{0}}\right)^{2}} & \frac{-\omega^{2}k_{0}^{2}L_{0}^{2}\left(\frac{j}{\omega C_{0}}\right)}{\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)^{2} - \left(\frac{j}{\omega C_{0}}\right)^{2}} & j\omega L_{0} + R_{0} - \frac{\omega^{2}k_{0}^{2}L_{0}^{2}\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)}{\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)^{2} - \left(\frac{j}{\omega C_{0}}\right)^{2}} & j\omega L_{0} + R_{0} - \frac{\omega^{2}k_{0}^{2}L_{0}^{2}\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)}{\left(j\omega L_{0} - \frac{j}{\omega C_{0}} + R_{0}\right)^{2} - \left(\frac{j}{\omega C_{0}}\right)^{2}} \end{bmatrix}$$

CIRCUIT DOMAIN VS. SPATIAL DOMAIN

Circuit Domain

Spatial Domain

Forward voltage: $a_{in} = V_k e^{j(\phi_k)}$

Maximum forward voltage: 65.5 V

Coil S-parameters: $S = \frac{\mathbf{b}_{out}}{a_{in}}$

COST FUNCTION

Cost function without considering B_1 inhomogeneity:

 $f(\mathbf{x}) = \||\text{diag}(S(\mathbf{x}))| - S_{ii}\| + \||S_r(\mathbf{x})| - S_{ij}\|$

Cost function considering B₁ inhomogeneity :

$$f(\mathbf{x}) = \left\| |\operatorname{diag}(S(\mathbf{x}))| - S_{ii} \right\| + W_1 \left\| |S_r(\mathbf{x})| - S_{ij} \right\| + W_2 \left\| \frac{\operatorname{SD}(B_1(\mathbf{x}))}{\operatorname{mean}(B_1(\mathbf{x}))} - target \right\|$$

The minimum is given by the constrained optimization:

$$\hat{x} = \underset{x}{\arg\min\{f(x)\}}$$

subject to

$$x \in \{\Omega: x_{n \text{ lower}} < x_{n} < x_{n \text{ upper}}, n = 1, 2, ..., 296\}$$

OPTIMIZE COIL PARAMETERS

Components	Hanako	Hanako (exclude B ⁺ ₁ inhomogeneity)	Ella	Duke	Louis
$x_1 - x_{96}$ Fixed lumped caps ("10 pF" or "8.2 pF") Optimization subject to $x_{1-96} \in [7, 13 \text{ pF}]$	9.66±1.24	9.52±0.87	9.66±0.91	9.53±0.85	9.69±0.87
x ₁₀₅ - x ₁₁₂ Tuning cap, top coils [10, 20 pF]	14.19±0.85	13.75 ± 0.50	14.80 ± 0.24	14.19±0.40	14.37±0.56
x ₉₇ - x ₁₀₄ Tuning cap, bottom coils [10, 20 pF]	15.70 ± 1.53	15.11 ± 0.45	15.43±0.39	15.52 ± 0.71	15.03 ± 0.55
$x_{121} - x_{128}$ Trimmer cap, matching, top coils [5, 20 pF]	5.56 ± 0.30	7.28±0.70	6.58±1.01	6.61±1.05	6.02±0.46
x_{113} - x_{120} Trimmer cap, matching, bottom coils [5, 20 pF]	10.84±2.33	$7.82 {\pm} 0.51$	8.39±2.21	6.97±1.08	7.72±1.29
x ₁₂₉ - x ₁₄₄ Shunt matching cap [5, 20 pF]	6.22±0.82	6.53±0.56	6.38±0.79	5.92 ± 0.43	6.18±0.47
x ₁₄₅ - x ₁₆₀ Parallel matching cap [5, 25 pF]	18.93 ± 4.08	19.55 ± 0.58	19.93±2.24	20.16±2.69	20.14 ± 2.34
$x_{161} - x_{168}$ RID inductor, top coils [5, 15 nH]	9.91±1.05	9.34 ± 1.42	9.37±0.90	10.00 ± 1.46	9.55 ± 1.42
$x_{169} - x_{176}$ RID inductor, bottom coils [5, 15 nH]	11.50±1.20	9.49±1.49	10.31±1.06	11.35±1.30	10.18±1.63
x ₂₀₁ - x ₂₁₆ RID isolated frequency [200, 298 MHz]	290.27±2.02	292.64±0.87	291.48±1.02	290.44±1.64	291.46±1.72
x ₂₄₁ - x ₂₅₆ RID Q factors [150, 350]	235.46 ± 22.06	216.98±15.90	238.24±9.23	245.25 ± 16.26	236.94±17.22
$x_{281} - x_{296}$ RID k coefficients [0.06, 0.5]	0.282 ± 0.029	0.257±0.019	0.279 ± 0.014	0.295 ± 0.021	$0.280 {\pm} 0.024$
x ₁₇₇ - x ₁₈₄ TD vertical inductors [5, 20 nH]	17.93±0.49	18.47±0.33	17.81±0.26	17.93±0.29	17.79±0.32
x ₁₈₅ - x ₂₀₀ TD diagonal inductors [5, 20 nH]	8.29±1.38	9.98±0.78	8.77±1.53	9.77±2.99	8.97±1.72
x ₂₁₇ - x ₂₄₀ TD Q factors [150, 350]	249.95±3.32	247.76±1.59	249.02±1.88	250.02±1.42	248.92±1.97
$x_{257} - x_{264}$ TD vertical <i>k</i> coefficients [0.06, 0.5]	$0.424 {\pm} 0.017$	$0.441 {\pm} 0.014$	0.435±0.012	0.416±0.016	0.433±0.014
x ₂₆₅ - x ₂₈₀ TD diagonal <i>k</i> coefficients [0.06, 0.5]	0.243 ± 0.018	0.255±0.013	0.256±0.011	0.259±0.023	0.255±0.016

- The capacitor values of the coil affect tuning to the resonance frequency
- The capacitor values of matching circuit affect matching S_{11}
- The capacitor values of RID affect decoupling S₁₂

WORST-CASE SAR MAPS

VOP locations superimposed on 10-g averaged SAR maps from the spectroscopy excitation mode.

2000 RANDOM RF EXCITATIONS

 $SAR = \mathbf{U}^H \mathbf{Q} \mathbf{U}$

IN SILICO VS. IN VIVO

0 100 200 300 400 500 600 700 7

IN SILICO VS. IN VIVO

A, The magnitude profiles of eight channels on one axial slice of the Louis model (first and second rows) and in vivo experiment (third and fourth rows).

B, phase profiles relative to the first channel.

C, the absolute magnitude and,D, phase difference between the Louis model and in vivo.

In both simulation and experiment, each coil element fed with peak 65.5 V forward voltage.

IN SILICO VS. IN VIVO

	B_1^+ Mean (Hz)	B ₁ ⁺ Std (Hz)	B ₁ ⁺ Std/Mean %	Peak Forward Power (W)	RF efficiency (Hz/ $\sqrt{ m W}$)				
A: With B_1^+ inhomogeneity in cost function									
Hanako (3.14 L)	487.5	69.2	14.2	1920.84	11.12				
Ella (3.20 L)	488.3	66.6	13.6	1922.79	11.14				
Duke (3.75 L)	473.8	64.2	13.6	1936.00	10.77				
Louis (3.28 L)	490.9	64.2	13.1	1781.28	11.63				
Mean simulated	485.1±7.7	66.0±2.4	13.6±0.4	1890.2±72.9	11.16±0.35				
in vivo (n = 8)	472.7±4.3	49.37±7.34	10.5±1.5	1723±104	11.39				
B: Excluding B_1^+ inhomogeneity in cost function									
Hanako	475.1	94.0	19.8	1705.6	11.50				
Ella	475.5	80.7	17.0	1782.8	11.26				
Duke	472.9	81.5	17.2	1824.4	11.07				
Louis	482.7	78.0	16.1	1716.4	11.65				
Mean simulated	476.6±4.3	83.6±7.1	17.5±1.6	1757.3±56.3	11.36±0.26				
C: Optimizing the user-tunable 32 tuning and matching capacitors on the "fixed" transceiver T_0									
Hanako	487.2	73.3	15.1	1846.11	11.34				
Ella	486.2	65.3	13.4	1931.0	11.06				
Duke	484.9	66.9	13.8	1915.7	11.08				
Louis	490.9	64.3	13.1	1748.2	11.74				
Mean simulated	487.3±2.6	67.4±4.0	13.9±0.9	1860.3±83.3	11.31±0.32				

DISCUSSION

- B_1 agreement is a convenient figure of merit for the accuracy of the EM simulation, since B_1 is empirically measurable
- The optimization must consider the capacitor, inductor, and coupling coefficient values of:
 - Coil segmentation capacitors
 - Coil matching circuits
 - Decoupling circuits (inductive and resonant)

ACKNOWLEDGMENTS

<u>Colleagues</u>

- Xin (Jack) Li
- Nikolai Avdievich
- Jullie Pan
- Hoby Hetherington

<u>Funding</u>

• NIH R01EB024408

Publications

- Li, Pan, Avdievich, Hetherington, Rispoli. MRM 2021. doi: 10.1002/mrm.28672
- Li, Gong, Pan, Hetherington, Rispoli. *Proc. 2019 IEEE ICEAA*. doi: 10.1109/iceaa.2019.8879006

