

Monitoring hemodynamic parameters in heart failure patients with wearable RF sensing

Cornelis van den Berg + (Bart Steensma) Prof. Computational Imaging for MRI diagnostic and therapy University Medical Center Utrecht

c.a.t.vandenberg@umcutrecht.nl

Declaration of conflict of interest related to the topic

Minority share holder of PrecorDx b.v.

Stuck at home during Covid-19

Bart Steensma

MRI : RF coil/antennas are motion sensors

- Reflection & scattering of RF fields is modulated by the motion of tissue structures
- This can be measured either actively by monitoring antenna impedance over time or passively by thermal noise modulations.

Buikman D, Helzel T, Roschmann P. The RF coil as a sensitive motion detector for magnetic resonance imaging. Magn Reson Imaging 1988;6:281–289.

Radiofrequency Sensing of heart

- Actively monitoring impedance of RF antennas placed on body with a nano-VNA
- Z₁₁(t) or Z₁₂(t)
- We could easily observe both imprint of respiration an cardiac induced motion
- These are caused by **mechanical** motion
- Can we use RF antennas to monitor pumping function of the heart in a **non-invasive manner?**

Chronic heart failure is a severe and growing healthcare problem

- 64M patients worldwide
- HF deteriorates from chronic to acute unnoticedly
- Home monitoring of heart function -> medication optimization -> prevents hospitalization

(1) Adapted from (2) 33-48% CHAMPION trial (Lancet 2016, JACC 2016), 57% PAS study (CIRC 2020), 62% MEMS-HF (), GUIDE-HF was not significant but showed significant 24% reduction pre-COVID (Lancet 2021); Several trials ongoing (GUIDE-HF observational, COAST, MONITOR-HF)

Invasive sensors to monitor heart function for heart failure

• Most common methods such as ECG, or weight monitoring lack sensitivity to mechanical pumping function.

HeartLogic CRT device based algorithmic HF monitoring

Invasive procedure required -> costs + potential complications

Can this be done in non-invasive manner by RF sensing?

Large variety of RF sensing for cardiac motion exists outside MRI field

1. Microwave Apexcardiography Frequency range: 2100 – 2500 MHz Lin et al, 1979, IEEE TMTT, 27:6

3. Near field coherent sensing Frequency range: 900-950 MHz

Hui et al, Nature Electronics 2018, 1, 74-78

EM simulations provide a better understanding of RF sensing signal

- Sim4Life (Zurich Medtech, Zurich, Switzerland)
- 4D XCAT model with beating heart (Segars et al, Phys Med Biol 2010)
- Predict interaction RF coil with body

Spatial sensitivity of RFS to cardiac motion is described by Reaction theorem¹

1: Richmond, IEEE Transactions on Antennas and Propagation 1961 9:6, 515-520

Verifying port's and field's perspectives on Z modulation

·····×···· △ Z from port ·····×··· △ Z Richmond ····×··· △ Z LV Richmond ····×··· △ Z RV Richmond ····×··· △ Z Myo Richmond

Loop antenna is sensitive to edges of heart moving through EM field

Validation with a subject specific model based on MRI

2d Transverse CINE FOV 400*250*100 mm³ Res 1.8*1.8*10 mm³

Matching between simulation and measurement

Near-linear relation between RFS signal and ventricular volumes

U UMC Utrecht

Ex vivo experiments in controlled environment confirm sensitivity to stroke volume

- The Lifetec Group, Eindhoven, The Netherlands
- Stroke volume gradually increased over time

In vivo porcine stroke volume correlates to amplitude RFS

- Existing experiments were occlusion balloon is tested (cardiothoracic surgery)
- Stroke volume and pressure are measured with admittance catheter (van Hout et al, Physiol Rep 2014)

○ Admittance cathether (ground truth)

○ RF Sensing

Experimental comparison to MRI shows linear relationship between RF signal and LV volume

Valsalva manoeuver changes the stroke volume

Valsalva manoeuver decreases left ventricular volume

Individual calibration for LV volume is required

Strong correlation observed between RF sensing and MRI measurements

- Minimize confounding factors
- E.g. placement
- However, calibration could be required
- Subject specific (modelling)
- Population based (modelling +data-driven regression)

Medical imaging, AI and EM simulations important building blocks

23

Measurement frequency strongly affects sensitivity to cardiorespiratory motion

Increasing RF frequency leads to more complex spatial weighing

$$Z_{t} - Z_{0} = -\frac{j\omega}{I^{2}} \int_{V} (\epsilon_{r,t} - \epsilon_{r,0}) E_{r,t} \cdot E_{r,0} dV$$

64 MHz

128 MHz

300 MHz

600 MHz

Increasing RF frequency leads to more complex spatial weighing

300 MHz

600 MHz

26

Experimental frequency comparison

Preliminary conclusions on frequency optimization

- At lower frequencies (< ~300 MHz), better sensitivity to ventricular volume
- Likely sensitive to surface motion or motion of substructures at higher frequencies
- higher frequencies -> more spatial encoding capability
- Experimental results best with 128 MHz, best separation between respiratory and cardiac motion

Conclusions and discussion

- Simulation platform enables in-depth study into physical principles and feasibility of RF sensing of stroke volume
- RFS sensing provides none-invasive mechnical information about cardiac function.
- Preliminary validation studies indicate feasibility of measuring stroke volume -> heart failure monitoring
- RF sensing combined with ingredients like MRI, AI and physical modelling will provide new ways of measuring cardio-vascular function outside a hospital setting.

Thank you all

Computational Imaging Group Nico van den Berg Alexander Raaijmakers Christina Louka Romy O'Connor

Cardiology & Cardiothoracic surgery Linda van Laake Arco Teske Niels van der Kaaij Mats Vervoorn

Technology Transfer Office Frederieke Smeitink Holger Veenhuis

PrecorDx Jaap de Bruin

Dutch CardioVascular Alliance

UTRECHT HOLDINGS

In silico optimization of loop antenna diameter

11 simulations to simulate full cardiac cycle, 11*7 for all different loop sizes

Antenna positioning needs to be precise within ~1 cm

Optimal loop size and position differs per subject

—— Left Ventricle – – Right Ventricle